GaussClass: table of contents
Classes (extension) | UGens

GaussClass : UGen : AbstractFunction : Object

Gaussian classifier


A Gaussian classifier, which classifies an input vector as belonging to one of the gaussian distributions defined in a specially-formatted Buffer.

The Buffer should be single-channel. Its exact format is specified towards the bottom of this file. If you have the MathLib quark installed then you can use the convenience function GaussClass.classesToFloatArray() to create a FloatArray suitable for loading to a Buffer.

Class Methods, bufnum: 0, gate: 0)



input signal, a multichannel signal specifying a co-ordinate in the space (i.e. a vector).


the buffer in which the shapes and weights of the gaussian components are specified.


the classifier is only active when this is greater than 0 (otherwise, previous value is held constant). Its default value is 1.

Inherited class methods

Undocumented class methods


Instance Methods

Inherited instance methods


The following example creates two-dimensional data with three classes:

~classes = [
[ // First class's mean, covariance, weight:
[2, 8],   [[1, 0], [0, 1]],   0.3
],[ // Second class's mean, covariance, weight:
[8, 2],   [[1, 0], [0, 1]],   0.3
],[ // Third class's mean, covariance, weight:
[8, 8],   [[0.75, 0.5], [0.5, 0.75]],   0.4
~serialised = GaussClass.classesToFloatArray(~classes);

// Now let's use it:
b = Buffer.loadCollection(s, ~serialised);
x = {
var rate = 20, input, result, gate;
//input = {, 10)}.dup(2); // Our "query point" wanders around in space
input = [, 10),, 10)]; // Or you can wander yourself using the mouse
gate =;
result =, b, gate);
input.poll(gate, "input");
result.poll(gate, "result");,, ~classes.size-1, 440, 880), 0, 0.1).dup); // sonify



The Buffer should be single-channel and hold data in the following order, once for each class:

- N floats: the mean vector;

- N*N floats: the inverse of the covariance matrix; and

- 1 float: the weight of the component divided by the square root of the determinant of the covariance matrix.

N is the dimensionality of the data space. The length of the Buffer is therefore C * (N*N + N + 1). will determine the number of classes from the size of the Buffer.