A linear-interpolating sound generator based on a function given in Clifford Pickover's book Chaos In Wonderland, pg 26. The function is:
x(n+1) = sin(b * y(n)) + c * sin(b * x(n)) y(n+1) = sin(a * x(n)) + d * sin(a * y(n))
According to Pickover, parameters a
and b
should be in the range from -3 to +3, and parameters c
and d
should be in the range from 0.5 to 1.5. The function can, depending on the parameters given, give continuous chaotic output, converge to a single value (silence) or oscillate in a cycle (tone).
sclang code translation:
(
var a = 1, b = 3, c = 0.5, d = 0.5, xi = 0.5, yi = 0.5, size = 64;
plot(size.collect { var x = xi;
xi = sin(b * yi) + (c * sin(b * xi));
yi = sin(a * x) + (d * sin(a * yi));
xi
});
)
freq |
Iteration frequency in Hertz |
a |
Equation variable |
b |
Equation variable |
c |
Equation variable |
d |
Equation variable |
xi |
Initial value of x |
yi |
Initial value of y |
xxxxxxxxxx
// default initial params
{ LatoocarfianL.ar(MouseX.kr(20, SampleRate.ir)) * 0.2 }.play(s);
xxxxxxxxxx
// randomly modulate all params
(
{ LatoocarfianL.ar(
SampleRate.ir/4,
LFNoise2.kr(2,1.5,1.5),
LFNoise2.kr(2,1.5,1.5),
LFNoise2.kr(2,0.5,1.5),
LFNoise2.kr(2,0.5,1.5)
) * 0.2 }.play(s);
)
xxxxxxxxxx
(
{ LatoocarfianL.ar(
SampleRate.ir/4,
[LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3,
LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2),
[LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3,
LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2),
[LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3,
LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2),
[LFDNoise0,LFClipNoise,LFDNoise1,LFDNoise3,
LFNoise0,LFNoise1,LFNoise2].choose.kr(rrand(2,20),rrand(2,20)*0.1,rrand(2,20)*0.2)
) * 0.2 !2}.play;
)