Values produced by the stream of pattern2 are used as inval to the stream of pattern1. Therefore pattern1 overrides (or filters) the output of pattern2, and so forth. This is an equivalent to the composite pattern: pattern1 <> pattern2 <> ... patternN
... patterns |
The patterns to be chained up. |
Add another pattern to the chain.
(
Pchain(
Pbind(\detune, Pseq([-30, 0, 40], inf), \dur, Prand([0.2, 0.4], inf)),
Pbind(\degree, Pseq([1, 2, 3], inf), \dur, 1)
).trace.play;
)
// also events can be used directly:
(
Pchain(
Pbind(\degree, Pseq([1, 2, 3], inf)),
(detune: [0, 4])
).trace.play;
)
// compose some more complicated patterns:
(
var a, b;
a = Prand([
Pbind(\degree, Pseq([0, 1, 3, 5, 6])),
Pbind(\dur, Pshuf([0.4, 0.3, 0.3]), \degree, Pseq([3, -1]))
], inf);
b = Prand([
Pbind(\ctranspose, Pn(1, 4)),
Pbind(\mtranspose, Pn(2, 7))
], inf);
c = Prand([
Pbind(\detune, Pfuncn( { [0, 10.0].rand }, 5), \legato, 0.2, \dur, 0.2),
Pbind(\legato, Pseq([0.2, 0.5, 1.5], 2), \dur, 0.3)
], inf);
Pchain(a, b, c).trace.play;
)
pattern <> pattern <> pattern
xxxxxxxxxx
// implicitly, the composition operator <> returns a Pchain when applied to a pattern.
// so that a <> b creates a Pchain (a, b).
// as seen above, in Pchain(a, b), a specifies (and overrides) b: b is the input to a.
// the above example is equivalent to:
(Pbind(\degree, Pseq([1, 2, 3], inf)) <> (detune: [0, 4])).trace.play;
(
a = Pbind(\degree, Pseq([1, 2, 3], inf), \dur, Prand([0.2, 0.4], inf));
b = Pbind(\detune, Pseq([-30, 0, [0, 40]], inf), \dur, 0.1);
c = b <> a;
c.play; // see that the \dur key of a is overridden by b
)
// also value streams can be composed
(
a = Pfunc { |x| x + 1.33 };
b = Pfunc { |x| x * 3 };
c = Pseries(1, 2, inf);
)
// post some values from the composite streams:
t = (a <> b).asStream;
10.do { t.value(10).postln };
t = (a <> b <> c).asStream;
10.do { t.value(10).postln };
t = (b <> c <> a).asStream;
10.do { t.value(10).postln };